- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Arzumanyan, Vika (1)
-
Li, Wei (1)
-
Liu, Cijie (1)
-
Liu, Xingbo (1)
-
Luo, Jian (1)
-
Qi, Yue (1)
-
Zhang, Dawei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A series of perovskite oxides (Ln = La, Pr, Nd, Gd; A = Ba, Sr) was investigated to understand the effects of A-site cation size on oxygen vacancy formation. Quasirandom mixed structures were generated using Alloy Theoretic Automated Toolkit (ATAT), followed by density functional theory (DFT) calculations. While mixing the orthorhombic structures with the hexagonal AMnO3 structures leads to lattices and global symmetries closer to cubic, the average volume generally increases with the average ionic size, and the local bond and angles exhibit more variations due to A-site mixing. DFT calculations and a statistical model were combined to predict oxygen reduction abilities. Thermogravimetric analysis (TGA) provided experimental validation of these predictions by measuring changes in oxygen non-stoichiometry under controlled conditions. Both indicated that larger A-site ionic size differences lead to greater, consistent with the larger variation in local structures, and enhanced redox capabilities. This combined computational-experimental approach highlights the importance of local structure variation, instead of average properties, in A-site cation engineering to optimize perovskite oxides for different devices relying on oxygen vacancy redox activity.more » « lessFree, publicly-accessible full text available December 1, 2026
An official website of the United States government
